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Abstract : The present work deals with some basic outcomes related to strict and non-strict non-linear differential and mteoral
inequalities. Further the comparison result is proved and used to discuss the uniqueness theorem.
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1. INTRODUCTION . s )
Let R be real line which is connected set, 1e whlch cannot be wntten in the form of _umon of two separated sets. Given a

bounded interval J =[£,,%, +a] in R for some fixed ty,a€R with a>0.
Consider the initial value problems for non-linear d 1fferent1al equanons

7 —[xO-f (t X(a(t)))] g(t x(a(t))) e

(L.1)

alar valued ‘

function.
i) x satlsﬁes the equation (1. 1)

various dynamic systems as al
of Krasnoselskii [13] and exten veli)% treat edi
perturbations. see Krasnoselsku[l 3] gnd'

apers oft ear differential equations with different

@iferentlal gand integral equations includes the
8,9,10,11 12]

of mlxed mequahtles and ex1stence theorem

n{fl ear differ

In this paper, we initiate the
Our claim is that, the outcomes of th
differential equations.
2. STRICT AND NON-STRICT INEQUALITIE
We need frequently the following hypothesis in what: follows
(Ao) The function x — x— f(t,x(e(?))) is mcreasmg in
We begin by proving the basic results dealing with non- lmear “differential inequalities.

Theorem 2.1: Assume that the hypothesis (Ao) holds. Suppose that there exist ¥,z € C(J, R)-

d )

such that : [»@) - &, y(a@)]<g[ts Wa@)], teJ 2.1
d
and Z[z(t) - f(t,z(a@)] = g[t. 2(a(®)], teJ (2.2)
If one of the inequalities (2.1) and (2.2) is strict and
(1)) <z(ty) (2.3)
then y(t) <z(t) . 2.4
forall teJ. s '
Proof :-Suppose that the mequahty (2.4) is false, then the set Z defined by
={teJ:y()= z(?)} (2.5)
Is non empty.

Denote ¢, =inf Z without loss of generality, we may assume that

y(t)=z(t) and y(t)<z() forallt<y
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Assumie that %[z(t) — f(t,z2(a(®))] > gt 2(a(t))) for all teJ.
Denote ' A
| YO =[y®- . ¥@®))] and
Z@O=[z(t)- f(t,a(®)))] for all te J
Now continuity of y and z together with (2.3) implies that there existsa f; > £, such that
, (&) =2(t) and y(t) <z(t) (2-6)
Forall £, <t <{,.
As (Ao) holds, it follows from (2.5) that
Y(t)=y) = f @, y(a(t))
=z(t,)— f(t,, z(a(4))) = Z(t).

YO =y)- ¢ y(a@)
<z(t)- f(t,z(a())
=> Y O <Z@)

and

for all t, <t <t,.

Dividing both sidesby £ #0
Y(t,+h

For smallh <0.
Taking the limitas & —0, we

Which is a contradiction oourio'n1
Hence () < z(t) y ok 4 ’
In the next theorem we discuss th ali on:linear differential equation (1.1) on J in which one sided -
Lipschitz condition used. v ' o :
Theorem 2.2 :- Assume that the hypothes;

g(t, y(a(t) - g(t, z(a(®)) < L Sup‘Ty(r)%. o

AT
fo<r<t . N

sthere exists a real number L>0 such that

rz@@))] (29  Whenever

V()2 z(r), t, Sr<t.then

y(t,) S z(t,) (2.10)
= y()<z(¢) : : o (2.11)
forallteJ. : : '

Proof:- Let €>0 be given and let L>0 be any given real number Set define g
z () - [tz (a(®) =2(t) - f (2, x(a(t)))+ Gez"('_'“ - (212

S0 that

o

2O £, 2 @) > 20 £ K@) o RSSOt L

We define
Z_(t)=z.(t)- f(t,z(a(®)) and Z(¢) = 2(0)~ f(t 2a(®)) for dall te.
Now using inequality (2.9), we have
gtz (@)~ g(t, 2(a(®) < L Sup[Z.(r) - Z(r)]

fosSr<t

= [ e g2Ltt)

Now ,
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» pomt theorem in the Banach spaces [4]

Z'.()=Z(6)+2L e 4
>g(t,z(t))+2L e
>g(t,z. () +2L e ™ —Le 21
=>Z'(t)2g(t,z(t)) for all tel.
Also we have Z_(t,) > Z(t,) 2 Y(t,). for all teJ.

"Now using theorem 2.1 with z = z_, to give

Y()<Z.(¢) forall telJ.

On taking €—> 0 in the above inequaltywe get Y(t) < Z(t) |
Which is further in view of hypothesis (Ao) implies that (2.11) holds on J. Hence the proof.

3. EXISTENCE RESULT _
In this article we prove an existence result for the non-linear differential equation (1.1) On a closed and bounded interval

J =[t,,t, +a] under the mixed Lipschitz and Compactness Conditions on-the non-linearity involved in it.
We use the non-linear differential equation (1.1) in the space C(J,R) of continuous real valued Functions defined on [t t, +a]

In C(J,R) we defln C(J,R) we define a "[“ ||x|| supix(t)l Clearly C(J,R) is a separable Banach space with respect to the '

above supremum norm. We prove The ems@g_nce of squtl ns for th non-ignear diﬁbrcn' gl equatxon (1.1) via the following fixed

B: S — E be two operators
a) A is non-linear contraction

To prove the theorem the fqglowm > e
Lemma 3.1 Assume that hypoth is Fw%

Ifand only if x satisfies the non-linear differential equatlon &
x(0) =%~ f (tos 2(@(t)) + f & 3(@(e) + I Wods 0 (32)

Proof :- Let # € C(J,R)
We first assume that x satisfy the (3.1) then by definition x(f)— f (t,x(a(?))) is continuous on the interval J =[1,,%, + a)

and so it is differentiable there, as a result 7 [x(t ) - f(t, x(a(t)))] is integrable on J.

Integrating (3. 1) from tp to t, we have

j [%()) - f (¢, x(a®)))] dt = j h(f)dt

[x()- £ @& x(@O))], = [itsyds

x(t,) =X,
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ie[x(t) - f(t, x.(a(t)))] =[x(t,) — St X(a(t, )]+ j h(s)ds ,teJ
" A

- X(0) = 5(0)~ S oy K@)+ S X)) + [ $)d 1.
Conversely suppose that x satisfies * ‘

0 = Xt~ Sl @)+ X@ON+ I h(s)ds teJ.

Differentiating above equation we get E[x(t) - f(t, x(a(t)))] =h(t), teJ
Now substituting £ =£, in (3.2) ,we get
X(tg) = 5y — f oy @) + £ @ty )
sx(ty)— f (Lo, x(a(,))) = %, — [ (1, X(x(£,)))

Since the mappisSi x > x— f(#(x{ is an increasing in R for all J € R-. Also the mapping X > x—f(t§ X isone onein

R. This proves x(%,) —'xo .This completes the lem

1 equation (1.1) on the interval J.

juation (1.1) hasa solution defined

-(3.3)
Clearly S is a closed , convex and'boug 3anach spac @ . . - _
Now using the hypothesxs (Ao) andi(/ d'a I ¢ capeasily show that the non-linear differential
(G.4)
o 3.5)
'(3.6_) _
Ax(f)+Bx(t) =x(t) ,teJ (3.7)

Our aim is to show that the operators A and B satisfy all the conditions of theorem 3.1).
i.e., we first show that A is a Lipschitz operator on E with the Lipschitz constant L.
Let x, y be any two members in E, then by hypothesis (A1)

|4G0) — AGO)| =1 &, x(@@) - £ y(@@))]
Lx(@(®)- (@)
" M+ [x(@®) - 7@)

< L=
- M+x—y]

Jor all o(t) e,R,: whereteJ.

4 ' o Ly
This shows that A is a non-linear contraction E with D-function ¥ defined by /() = —A?—
r

Now we have to show the second condition of theorem (3.1)
i.e., B is compact and continuous operator on S into E.
First we prove, B is continuous on S.

Let {x } be a sequence in S converging to a point x € S. Then by dommated convergence theoxem for integration, we obtain
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lim B, (1) = lim| %, — / (6, (0t »)+jg(s %, (a(s))ds

fy

— tim 5, 1 5@())+ lim [ 255, ()
' ]
= 5~ [ x{att)) + [[ limg (s, ¥, (a(s)) |ds

= x,— f (to, x{a(t,)) + | £(s, x(a(s))ds

=Bx(f) , for teJ.
Moreover, it can be shown as below that { Bx, } is an equicontinuous sequence of functions in X. Now, following the arguments

similar to that given in Granas et.al[16] , it is proved that Bis a continuous operator on S.
Now we have to show B is compact operator on S.
To prove this it is sufficient to show that B(S) is a uniforml

I_/:t x €S be arbitrary. Then b hypothesis (A ).

nded and equicontinuous set in E.

< l X0 —
Taking supremum over t,

SupIBx(t)l < Sup
ot i

S|P("|)"P(t2)|

t

Where p(f) = j h(s)ds.
P

Since the function p is continuous on compact J, it is umformly continuous.

Hence, for €> 0, there existsa & >0 such that |t —t2| <> |Bx(t )—Bx(t, )I <e

For all #;,¢, € J and for all x €.

This shows that B(S) is an equicontinuous set in E. : )
Now being uniformly bounded and equlcontmuous set in E, so it IS ~compact by Arzela-Ascoh theorem. This proves, B isa

continuous and compact operator on S.
Now we have to show that x = Ax+ By for all yeS=>xeSis Satl.gﬁed

Let x€ Eand y € S be arbitrary such that x = Ax+ By .
Then, by assumption (A1) , we have
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|x(5)] =|4x(2) + By(®)|
< |Ax(t)'| +|By(®)|

<[y = f oo Xt )] +1f @, x|+ [ g (s, y(@(s))]ds
<Jxo = f g x (@t + {1/ G x(@(®) — @0 +]1 @ 0[]+ [lg(s, yats))|ds

t
= Ixo - f(to’x(a(to)))l +L+F, +Ih(S)dS
b
Taking supremum over t,
I < — f o M@t )|+ L+ Fy + ]2
Thus all the conditions of theorem (3.1) are satisfied and hence the operator equation Ax +By X has a solution in S.As a

result , the non-linear differential equation (1.1) hasa solutlon defined on J .This completes the proof.

4. MAXIMAL AND MINIMAL SOLUTIONS
Under this section we shall discuss the existence

“(L.Don J =[ty,t, +a].
Definition : - A solution-of the |
Non-linear differential equatic

equation (1.1) is said to be
equation (1.1) existing on J.

We study the case of Maxi
and appropriate modifications.

Our main existence theorem for axnmqq ”%tlo can be stated

s,

Theorem 4.2 Assume that the hypotheses ) hold. Further L&
maximal solution defined on J. .

5. COMPARISON THEOREMS :

The main use of differential inequalities is to ﬁ?x%‘the bound fo Weso ution set for the dlfferentlal inequality related to Non- .
linear differential equation (1.1).In this section we prB%é,that&th maximal and minimal solutions serve the bounds for the

solutions of the related differential inequality to Non-linear differential equatlon (1.1)on J = [to,t0 +a].
Theorem 5.1 Assume that the hypotheses (Ao)-(A2) hold. Further, if there exists a function # € C(J R) such that

[u(t) ftua@®))]<etu(a@), te R CR )
w(ty) < x,. |
Then, u(t) < r(t) R < (52)

for all € J ,where r is a maximal solution of the Non-linear differential equation (1.1) on J. _ o
Proof:- Let €> 0 be arbitrary small real number. Then by theorem (4.2), r(t,€) isa Maxxmal solution of the non-lmear

differential equation (4.1) and that the limit
r(t) =limr(,€) (5.3)
€ :

is uniform on J and the function r is a maximal solution of the non-linear-differential equation (1.1) on J . Hence we obtain

%[r(t,a—f(t,'r(a(t),e»]=g(t,r(a<t),e))+e,te.f (5.4)

r(t,,€)=x,+€
From above inequality it follows that
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Now, we apply Theorem 5.1 with f = 0to get that m(f) ="

g;[r(t ,©)— [, r(a(t),€)]> gt,r(a(t).e)+e,te  (55)

r(ty),€) > x,
Now we apply theorem (2.1) to the inequalities (5.1) and (5.5) and conclude that
u(®)<r(t,e) -, 36)

For all £ € J.This further in view of limit (5.3) implies that inequality (5.2) holds on J. This completes the proof.
Theorem 5.2 Assume that the hypotheses (Ao)-(A2) hold. Further, if there exists a function

ve C(J,R) such that

%[v(t) —f@v@®)]z gt vt) ,teJ (5.7
V(t,) > x,. '
Then, () <V (5.8)

forall t € J,where p is a minimal solution of the Non-linear differential equation(1.1)on J.
Note that, Theorem 5.1 is useful to prove the boundedness and uniqueness of the solutions for the Non-linear differential

equation (1.1) on J.A result in this direction is
Theorem 5.3 : Assume that the hypotheses (Ao)- (Az) hold. Suppose that there exists a

Function G:JxR, &> R such‘thatw

Proof:- By theorem 3.2, the non-1
Suppose that there are two soluti

= G(t,m(t))
for all t € J; and that m(t,) =0

r'0- Joralltel.
This gives

w () —f(t,m(a®) =)~ f (t,uz(d(F))) fO" allteJ.
Finally, in view of hypothesis (A0) we conclude that 2, (£) =u,(¢) onJ. This completes the proof.
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